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1. Introduction

The tremendous successes of self-supervised learning (SSL) techniques in the
computer vision community have promoted the development of SSL in
histopathological image analysis.

There have been some published works, but these approaches process
histopathological images by simply applying existing contrastive learning (CL)-
based SSL frameworks (e.g., SImCLR and MoCo) or tailoring some histopathology-
oriented SSL tasks on a CNN-specific backbone.



1. Introduction

e Three aspects that could be further improved.

1.

CL assigns two augmented views from the same instance as one positive pair, which limits
the variability and diversity of positive samples.

The learning of global context features is often limited by the receptive field of CNN.
The data currently used for SSL training are relatively homogeneous and their number is

rather limited.

e Contributions

1.
2.

Semantically-relevant contrastive learning (SRCL) framework

A hybrid model CTransPath as the backbone, which is designed by integrating a CNN and a
Swin Transformer architecture

The used database is the largest publicly available in the histopathology
scenario(approximately 87T).




2. Methods

e This section presents an overview of our proposed SSL algorithm based on a
semantically-relevant contrastive learning (SRCL) and a hybrid backbone

(CTransPath). v o 26 \
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Fig. 1. An overview of our proposed SRCL approach for histopathological image applications. It is an improved framework based on MoCo v3 (Chen et al., 2021) The negauve
samples are stored in each mini-batch and the positives are from two paths: (i) two data augmentations of the current input image and (ii) top § ically-r

identified by comparing the current input feature with samples in the memory bank. Based on the above design, a semantically-relevant contrastive loss is proposed to guide the
network training.




2.1. Problem formulation

o Let D" = {X)L, denote the unlabeled dataset used for SSL pretraining

e The CL-based SSL method performs two data augmentations on two network branches
for each sample, generating D? = {x/}Y and D* = {Xf}j-vzl

e The two data augmentations from the same input are fegarded as positive pairs

o D™ = {x/.x}=j) while data augmentations from different images are used to form
negative pairs D" = (., X}c Mz
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2.1. Problem formulation

e Moco V1:
o Dictionary as a queue: The current mini-batch is enqueued to the dictionary,
and the oldest mini-batch in the queue is removed.
o Momentum update: Rapidly changing encoder reduces the key representations’

consistency. Formally, denoting the parameters of f as % and those of fa as % ,
we update & by: Ok < mb + (1 —m)fq
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2.2. Semantically-relevant contrastive learning

For histopathological images, there are a large number of similar patches (i.e.,
patches with similar cellular and tissue compositions) both within and across WSIs,
which are defined as semantically relevant samples.

Thus, the positive pairs should be counted more instead of fixed one pair in the
traditional CL setting.



2.2. Semantically-relevant contrastive learning

e There are three parallel paths: online, target, and shared target branches for

encoding three different views of the input.
o Target branch: Refresh the memory bank as training proceeds.
o Shared target branch: Generate a query to retrieve semantically-similar samples from the

memory bank.
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2.2. Semantically-relevant contrastive learning

e Similar to Moco v1[1]

©)

Dictionary as a queue: Memory bank that is constructed by enqueueing the features from
the target branch during training, which is updated at the end of each iteration.
Momentum update: Train the online branch with parameter 8, update the target branch
with parameter § by § < mé + (1 - m)6.
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[1] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR. 2020.



2.2. Semantically-relevant contrastive learning

e Given a histopathological image patch X, it generates two augmentations (X; and X5 ).

e x1 pass through the online branch: Y1

= /7)), 2 = &'y))

e x2 pass through the target branch: ¥2 = /(X)) %, = g5(¥,)
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3.2. Semantically-relevant contrastive learning

e In conventional CL method, anchor z has one positive sample 2,
e To obtain more positive samples, we aim to find samples that are visually similar to

Z.

e For this purpose, the top S samples with the highest cosine similarity are taken as the

new positives for anchor z.

e Combining the original positive sample
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2.2. Semantically-relevant contrastive learning

e Semantically-relevant contrastive loss Lsgrer :
S+1
Yo exp (z - z/7)

L£5(z,2%,27) = —log 7 ~
Yo exp(zf -z/7) + 21 €Xp (zj_ : z/r)

1 A 1 A
ESRCL - §£2(Z1,22,Z )+ §£2(22,Z1,z )

e where z represents an anchor sample.

z + and z — denote the positive and negative features of the anchor feature.

S+1 and N represent the number of positive and negative pairs.
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2.3. Backbone construction

e Why Swin Transformer[2] better than ViT in computer vision?

1. Hierarchical feature maps by merging image patches.
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[2] Ze Liu, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." ICCV. 2021.



2.3. Backbone construction

e Why Swin Transformer|[2] better than ViT in computer vision?

2. Shifted window approach for computing self-attention.

Layer | Layer 1+1
A local window to
perform self-attention
A patch
W-MSA SW-MSA
multi-head window- multi-head

based self-attention

[2] Ze Liu, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." ICCV. 2021.

shifted window-based
self-attention
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2.3. Backbone construction

e Why Swin Transform|[2] better than ViT in computer vision?
1. Hierarchical feature maps by merging image patches.
2. Shifted window approach for computing self-attention.
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2.3. Backbone construction

e Problem of Transformer architecture
o [3]indicated that the Transformer architecture is much harder to optimize compared with
CNNs, mainly due to the patch projection implemented through large-kernel large-stride
convolution operations.
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2.3. Backbone construction

e The CNN module is designed with three consecutive convolutional layers with kernel
sizesof 3x3,3x3 and 1 x1
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3. Experimental results and discussions

e Five types of downstream experiments
o patch retrieval
o patch classification
o weakly-supervised WSI classification
o mitosis detection
o colorectal adenocarcinoma gland segmentation
e These experiments include ablation study, comparisons with state-of-the-art methods
on these downstream datasets, and comparisons with different network pretraining

methods.
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3.1. Datasets

Dataset
TCGA
PAIP
UniToPatho
TissueNet
NCT-CRC-HE
Colorectal cancer (CRC)
Camelyonl16
TCGA-NSCLC
TCGA-RCC
MIDOG

CRAG

# of WSIs
29,763
2,457
292
1,016

86

399
993
884

150

# of types
32

6

magnification
20x%
20x%

20x

patchsize
1024 x 1024
1024 x 1024
1812 x 1812
1200 x 1200

224 x 224

150 x 150

256 x 256

1512 x 1516

# of patches
14,325,848
1,254,414
8,699
5,926
107,180

5000

79,399

20
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3.2.

Experimental setups in the pretraining stage

e Use SRCL-based framework to train the CTransPath model

(@)

©)

o O O O

Mini-batch: 1,024.
Histopathology-oriented data augmentation strategies [4]
m random cropping, Gaussian blur, and hue and saturation shifting in the HSV color

space.

7: 0.2 (Following MoCo V3 [5])

Optimizer: AdamW

The number of new positive pairs S: 4

Epochs: 100

[4] David Tellez, et al. "Quantifying the effects of data augmentation and stain color normalization in
convolutional neural networks for computational pathology." Medical image analysis. 2019.

[5] Xinlei Chen, Saining Xie, and Kaiming He. "An empirical study of training self-supervised vision
transformers." ICCV. 2021.
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3.3. Evaluation metrics

e For the classification task
o Accuracy (ACC)
o Area under the curve (AUC) score
o F1 score
® For image retrieval
o ACC@k: ACC@k =1 if any one of the top-k returns has the same label as the query image
o mMV@k: mMV@k =1 only if the majority of these retrieved images have the same label
as the query image
® For the detection and segmentation tasks
o F1 scores
o Dice scores
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3.3. Ablation study

e Benefit of in-domain SSL pretraining
Benefit of hybrid CNN and Transformer encoder
Benefit of semantically-relevant positives

Table 1

Ablation study. Sup. denotes the supervised pretraining process. ImageTrans and HistoTrans denote ImageNet-pretrained Swin Transformer and
histopathology-pretrained Swin Transformer, respectively. HistoTrans+CNN means our CTransPath backbone. SN denotes spatial-neighbor-based
contrastive learning method.

Methods TissueNet UniToPatho
ACC@1 ACC@3 ACC@5 mMV@5 ACC@1 ACC@3 ACC@5 mMV@5

[ImageTrans (Sup.) 0.5324 0.7892 0.8799 0.5035 0.5334 0.7899 0.8708 0.5463 ]
ImageTrans (SSL) 0.5618 0.8171 0.9047 0.5565 0.5749 0.8103 0.8803 0.5799
[HistoTrans+CL 0.6051 0.8395 0.9220 0.5910 0.5935 0.8194 0.8891 0.6011 ]
HistoTrans+CNN+CL 0.6239 0.8405 0.9109 0.6247 0.6183 0.8234 0.8837 0.6294
HistoTrans+CNN+SN 0.6304 0.8488 0.9158 0.6363 0.6201 0.8305 0.8928 0.6332
HistoTrans+CNN+SRCL (ours) 0.6505 0.8606 0.9261 0.6617 0.6329 0.8370 0.8966 0.6417
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3.3. Ablation study

Table 2
Effect of different values of S for the number of pseudo-positives on the patch retrieval
accuracy.
7 N
S=0 S§=1 S=2 S=4 §=6 5§5=28
TissueNet ACC@1 0.6239 0.6333 0.6409 | 0.6505| 0.6498 0.6417
mMV@5 0.6247 0.6338 0.6527 | 0.6617 | 0.6610 0.6537
UniToPatho ACC@1 0.6183 0.6194 0.6211 | 0.6329| 0.6271 0.6223
mMV@5 0.6294 0.6340 0.6370 \0.6417/ 0.6370 0.6311
Table 3
Effect of different number of epochs for warmup on the patch retrieval accuracy.
7 S
Epoch 0 2 5 10
TissueNet ACC@1 0.6304 0.6417 0.6505 0.6493
mMV@5 0.6358 0.6525 0.6617 0.6606
. ACC@1 0.6209 0.6286 0.6329 0.6309
ToPath
UniToPatho mMV@5 0.6332 0.6363 | 0.6417)  0.6407




3.4. Comparison with other SSL methods

Table 4
Results of patch retrieval and comparison with other state-of-the-art SSL frameworks. Note that the implementation of all other SSL methods is based on their publicly available
code but the backbone model and the training data are switched to be the same as ours.

Methods TissueNet UniToPatho

ACC@1 ACC@3 ACC@5 mMV@5 ACC@1 ACC@3 ACC@5 mMV@5
SimCLR (Chen et al., 2020) 0.6019 0.8297 0.9036 0.6021 0.6070 0.8149 0.8819 0.6170
MoBY (Xie et al., 2021) 0.6131 0.8360 0.9077 0.6077 0.6110 0.8197 0.8873 0.6173
DINO (Caron et al., 2021) 0.6169 0.8481 0.9183 0.6183 0.6149 0.8224 0.8909 0.6222
MoCo v3 (Chen et al., 2021) 0.6239 0.8405 0.9109 0.6247 0.6183 0.8234 0.8837 0.6294
SRCL (ours) 0.6505 0.8606 0.9261 0.6617 0.6329 0.8370 0.8966 0.6417
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3.5. Results of patch classification

Table 5

Linear evaluation results on NCT-CRC-HE dataset with different sizes of training data. ImageTrans (Sup.) and ImageTrans (SSL) refer to models pre-trained using the ImageNet
data in a supervised and self-supervised manner, respectively. All other compared SSL frameworks are pretrained using our training data. A supervised baseline using 100% of the
training data achieves an F1 score of 0.9295 and an ACC of 0.9458.

Methods Backbone Percentage of training data

0.5% 1% 10% 50% 100%

F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC
ImageTrans (Sup.) Swin 0.4770 0.5703 0.5584 0.6157 0.7780 0.8139 0.8206 0.8585 0.8323 0.8705
ImageTrans (SSL) Transformer 0.6997 0.7348 0.7816 0.8213 0.8715 0.9035 0.8867 0.9171 0.8903 0.9216
SimCLR 0.8062 0.8503 0.8331 0.8649 0.8613 0.9195 0.8971 0.9269 0.9025 0.9315
BYOL ResNet50 0.8234 0.8636 0.8649 0.8965 0.8876 0.9245 0.9050 0.9324 0.9144 0.9413
SimSiam 0.8348 0.8730 0.8660 0.9054 0.8903 0.9286 0.9085 0.9387 0.9144 0.9457
MoCo v2 0.8435 0.8875 0.8702 0.9130 0.9050 0.9362 0.9156 0.9467 0.9213 0.9514
SimCLR 0.8204 0.8581 0.8439 0.8716 0.8740 0.9297 0.9043 0.9316 0.9081 0.9349
MoBY 0.8317 0.8699 0.8578 0.8965 0.8919 0.9357 0.9144 0.9442 0.9156 0.9465
DINO CTransPath 0.8355 0.8799 0.8671 0.9128 0.8915 0.9369 0.9135 0.9438 0.9198 0.9502
MoCo v3 0.8682 0.8978 0.8739 0.9228 0.9046 0.9415 0.9208 0.9516 0.9254 0.9548

SRCL (ours) 0.8988 0.9266 0.9334 0.9539 0.9420 0.9635 0.9474 0.9648 0.9482 0.9652




3.5. Results of patch classification

Table 6
Results of downstream classification tasks performed on CRC dataset (SVM classification)
Methods ACC
Combined texture descriptors (Kather et al., 2016) 87.40
Ensemble of DNNs (Ghosh et al., 2021) 92.83
Fine-tuned VGG-19 (Faust et al., 2018) 93.58
[KimiaNet (Riasatian et al., 2021) 96.80 |
Ensemble of CNNs (Nanni et al., 2021) 97.60
(Ours 98.20 |
« TUMOR « TUMOR
STROMA . STROMA
«  COMPLEX «  COMPLEX
+ LYMPHO + LYMPHO
«  DEBRIS « DEBRIS
«  MUCOSA MUCOSA
» ADIPOSE s+ ADIPOSE
« EMPTY « EMPTY
Fig. 3. Visualization (t-SNE) of the classification performance of all images in the CRC dataset based on the features generated from KimiaNet (left) and SRCL-pretrained CTransPath 29

(right).



3.6. Results of weakly-supervised WSI classification

e The result are averaged over 5-fold cross-validation

e Note that the results of TransMIL and DSMIL are copied directly from their publications.
Table 7
Results of weakly-supervised classification on three public datasets.

CAMELYON16 TCGA-NSCLC TCGA-RCC
ACC AUC ACC AUC ACC AUC
Kernel ATT (Rymarczyk et al.,, 2021) 0.773 0.804  0.841 0.921 0.856 0.945

C2C (Sharma et al., 2021) 0.809 0.841 0.849 0.921 0.909 0.972
MIL-RNN (Campanella et al.,, 2019) 0.819 0.856 0.856 0.931 0.914 0.974
AbMIL (Ilse et al., 2018) 0.820 0.857 0.838 0.920 0.902 0.980
CLAM-MB (Lu et al., 2021) 0.835 0.854 0.863 0.938 0.925 0.988
CLAM-SB (Lu et al., 2021) 0.837 0.873 0.859 0.938 0.921 0.987
TransMIL (Shao et al., 2021) 0.884 0.931 0.884 0.960 0.947 0.988
DSMIL (Li et al., 2021b) 0.899 0.917 0.929 0.958 - -

CLAM-SB + Ours 0.922 0.942 0912 0.973 0.967 0.991




3.7. Visualization for some good cases and bad cases

'L
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3.8. Results of downstream detection and

segmentation tasks

e Faster RCNN and U-Net are employed as the detection and segmentation frameworks.

Table 8

Results of downstream mitosis detection and colorectal adenocarcinoma gland segmen-
tation tasks via full network fine-tuning. The ImageTrans adopts Swin Transformer as
the encoder and the four compared SSL frameworks employ our CTransPath as the

encoder.
Model Mitosis detection (F1) CRAG segmentation (Dice)
ImageTrans (Sup.) 0.6842 0.8743
ImageTrans (SSL) 0.6958 0.8824
SimCLR 0.7078 0.8962
MoBY 0.7110 0.9010
DINO 0.7083 0.8996
MoCo v3 0.7204 0.9050
Ours 0.7332 0.9156
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3.3. Conclusion

e We propose a customized SSL architecture for various histopathological image
analysis, which contains a hybrid CNN-transformer backbone (CTransPath) and a
semantically-relevant contrastive learning (SRCL) strategy.

e CTransPath makes use of both local and global receptive fields to extract
discriminative and rich features.

e SRCL aims to select more semantically relevant positives to increase the sample
diversity in the instance discrimination process.

e Our SRCL pretrained CTransPath on large-scale histopathological images has the
potential to benefit various downstream tasks by transfer learning or direct feature
extraction.
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Thanks For Listening !
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